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Web Appendix A

This Appendix provides supporting information for Sections 2 and 3 of the main paper. This includes
proofs of Theorems 2.1, Theorem 2.2 and Theorem 3.1 as well as a discussion on incorporating parameters
in error terms.

Web Appendix A.1 Derivation of the Z-transform exhaustive summary (Theorem 2.1a)

As stated in the main paper, a continuous linear state-space model is defined by the equations,

y(t,θ) = C(θ)x(t,θ) and
∂

∂ t
x(t,θ) = A(θ)x(t,θ)+B(θ)u,

where y is the output function, x is the state-variable function, θ is a vector of unknown parameters, u
is the input function and t is the time recorded on a continuous time scale. The matrices A, B, C are
the compartmental, input and the output matrices respectively. The Laplace transform approach involves
taking the Laplace transform of y(t,θ) and rearranging the resulting equation results in the transfer function
Q(s) = C(sI−A)−1B. An exhaustive summary is then formed from the coefficients of s in the numerator
and denominator of Q(s) (see, for example, Bellman and Aström, 1970 and Godfrey and Distefano, 1987).

As stated in equation 4 of the main paper, a discrete linear state-space model is defined by the equations

yt = Atxt +η t and xt = Ctxt−1 + ε t−1, t = 1,2,3, . . .

where At is an n×n transition matrix, Ct is an m×n measurement matrix, x0 is a vector of initial values
and η and ε are error processes with zero means. The model has n states with m states or combination
of states observed, where m ≤ n. If At = A and Ct = C, so that neither matrix contains time-dependent
parameters, then the model becomes,

yt = Cxt +η t and xt = Axt−1 + ε t−1, t = 1,2,3, . . . ,

and the expectation of yt is,

E(yt) = CE(xt) with E(xt) = AE(xt−1), t = 1,2,3, . . .

This can be rewritten as

E(yt) = CE(xt) with E(xt) = AE(xt−1)+Bδt−1, (1)
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where δt is equal to 1 at time t = 0 and 0 otherwise. The matrix B = Av, with v = [x0,1,x0,2, . . . ,x0,n]
T . This

reparameterises the model so that Bδt−1 specifies the initial values rather than x0, which becomes x0 = 0.
The discrete analogy of Laplace transforms is Z-transforms. Let w̃z denote the unilateral Z-transform

of E(wt), with w̃z = ∑
∞
t=0 E(wt)z−t . As the Z-transform of E(wt−1) is z−1w̃z, and the Z-transform of δt−1

is z−1, taking Z-transforms of (1) results in,

x̃z = z−1Ax̃z + z−1B⇒ x̃z = (zI−A)−1B⇒ ỹz = C(zI−A)−1B.

The transfer function is then defined as Q(z) = C(zI−A)−1B = C(zI−A)−1Av, which is of a similar
form to the transfer function for continuous state-space models. The numerator and denominator of Q(z)
are both polynomials in z. In the same way as for continuous state-space models we form the exhaustive
summary from the non-constant coefficients of the powers of z is the numerator and denominator of Q(z).
We do not include the constant terms as they will not affect the parameter redundancy results.

Web Appendix A.2 Derivation of the expansion exhaustive summary (Theorem 2.1b)

The Taylor series approach, used in continuous state-space models, involves expanding y using the differ-
ential of y evaluated at t = 0 (Pohjanpalo, 1978). We firstly consider discrete linear state-space models.
We return again to the general form of the discrete linear state-space model, given by equation 4 of the
main paper with

yt = Atxt +η t and xt = Ctxt−1 + ε t−1, t = 1,2,3, . . .

In this discrete state-space model, E(y) can be expanded instead by finding algebraic expressions for each
successive E(yt) starting at t = 0. We assume that the start value is x0, which can be either a vector of
known initial values, or a vector consisting of some function of the parameters. We then proceed to expand
each of the observation vectors in turn. For linear discrete state-space models this gives,

E(x1) = A1x0 E(y1) = C1E(x1) = C1A1x0
E(x2) = A2E(x1) = A2A1x0 E(y2) = C2E(x2) = C2A2A1x0

...
...

The E(yt) then form the expansion exhaustive summary with terms,

κ =

 E(y1)
E(y2)

...

=

 C1A1x0
C2A2A1x0

...

 .
Note this assumes that there are no parameters in the error terms.

For non-linear discrete state-space models we expand directly giving

x1 = g(x0)+ ε0 y1 = h(x1) = h{g(x0)+ ε0}+η1
x2 = g(x1)+ ε1 = g{g(x0)+ ε0}+ ε1 y2 = h(x2) = h[g{g(x0)+ ε0}+ ε1]+η1

...
...

Again assuming there are no parameters in the error terms then the error terms can be considered as
constant values that will have no effect on parameter redundancy results. Adding a constant is a one-to-one
transformation. Therefore this can be simplified to the expansion exhaustive summary,

κ =

 h{g(x0)}
h[g{g(x0)}]

...

 .
We note that the linear expansion exhaustive summary could also be derived using this argument.
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Web Appendix A.3 Proof of Theorem 2.2

The proof of Theorem 2.2 is similar to Thowsen (1978)’s proof for the same result in the Taylor series
approach for continuous state-space models. Theorem 2.2 states that if A and C are constant and there are
n states, then a simpler exhaustive summary consists of the terms κ = [E(y1)

′, . . . ,E(y2n)
′]′.

The exhaustive summary can be split into three parts:

y1 = CAx0
y2 = CA2x0
...

yn−1 = CAn−1x0

Part a

yn = CAnx0
yn+1 = CAn+1x0

...
y2n = CA2nx0

Part b

y2n+1 = CA2n+1x0
y2n+2 = CA2n+2x0

...

Part c

As A is an n×n matrix, by the Caley-Hamilton Theorem,

An = δ0I+δ1A+δ2A2 + . . .+δn−1An−1,

so that

yn = C(δ0I+δ1A+δ2A2 + . . .+δn−1An−1)x0
= δ0Cx0 +δ1y1 +δ2y2 + . . .+δn−1yn−1.

Similarly,

yn+1 = CAAnc0
= CA(δ0I+δ1A+δ2A2 + . . .+δn−1An−1)x0
= δ0y1 +δ1y2 +δ2y3 + . . .+δn−1yn.
= δ0y1 +δ1y2 +δ2y3 + . . .+δn−1(δ0Cx0 +δ1y1 +δ2y2 + . . .+δn−1yn−1).

It follows that all the exhaustive summary terms of parts b and c can be written in terms of y1 to yn−1,
δ0 to δn−1 and y0 = Cx0. From part a we can uniquely determine y1 to yn−1. Therefore it follows that
from part b we can uniquely determine δ0 to δn−1 and y0, and part c contains no additional information
on the parameters and does not need to be considered. Therefore only the first 2n terms of the exhaustive
summary are needed.

Web Appendix A.4 Error Terms

The exhaustive summaries of Theorem 2.1 in the main paper assume that there are no parameters in the
error terms η and ε . Here we consider how the error terms are included in the exhaustive summaries.

One possible exhaustive summary for linear discrete state-space models can be derived by expanding
the variance as well as the expectation. This results in the exhaustive summary

κ =


E(y1)

Var(y1)
E(y2)

Var(y2)
...

 .
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Example 1b continued

In Besbeas et al. (2002) the variance is,

Var(yt) =
[

0 1
]

Var(xt)+σ
2 with Var(xt) =

[
0 ρφ1

φa(1−φa) φa(1−φa)

]
E(xt−1).

For T = 2 years the exhaustive summary consists of the expectation terms used previously of κ1 = [x0,1φa+

x0,2φa, x0,2φ1φaρ + x0,1φ 2
a + x0,2φ 2

a ,x0,1φ1φ 2
a ρ +2x0,2φ1φ 2

a ρ + x0,1φ 3
a + x0,2φ 3

a ]
′ and the the variance terms

κ2 =

[
Var(y1)
Var(y2)

]
=

[
(x0,1 + x0,2)φa(1−φa)+σ2

φa(1−φa){x0,2φ1ρ +(x0,1 + x0,2)φ
2
a (1−φa)}+σ2

]
.

The derivative matrix formed by differentiating [κ ′1,κ
′
2]
′ with respect to the parameters θ = [φ1,φa,ρ,σ ]

has rank 3, as previously this result can be extended to any T ≥ 2. This parameter redundant model can be
shown to have the estimable parameter combinations φ1ρ , φa and σ .

An alternative exhaustive summary, that is also applicable for non-linear discrete state-space, starts with
the exhaustive summary, h{g(x0)+ ε0}+η1

h[g{g(x0)+ ε0)}+ ε1]+η1
...

 .
The terms ε i and ηi can be replaced replaced with appropriate functions such as the variance of these terms.

Consider the case where the variance of ε i is a function of the estimable parameters of the model with
known variances. The exhaustive summary could then be simplified to h{g(x0)}+Var(η1)

h[g{g(x0)}]+Var(η1)
...

 .
Next suppose that there is a single variance parameter for the error term ηi so that Var(ηi) = σ2. The
exhaustive summary is then h{g(x0)}+σ2

h[g{g(x0)}]+σ2

...

 .
Suppose with exhaustive summary terms,

κw(θ) =


h{g(x0)}

h[g{g(x0)}]
...

h{gn(x0)}


the model has rank q with estimable parameter combinations β . Also assume the next term can be repa-
rameterised in terms of β , so that κex(β ,σ) = h{gn+1(x0)}+ σ2. We are interested in examining the
parameter redundancy of the model with exhaustive summary,

[
κ(θ ,σ)

κex(θ ,σ)

]
=


h{g(x0)+σ2}

h[g{g(x0)}+σ2]
...

h[gn(x0)+σ2]
h[gn+1(x0)+σ2]

 ,
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which we reparameterise as[
κ(β ,σ)

κex(β ,σ)

]
.

The appropriate derivative matrix can be partitioned as

D =

[
D1,1 D1,2
D2,1 D2,2

]
=

 ∂κ

∂β

∂κex

∂β

∂κ

∂σ

∂κex

∂σ

 (2)

Theorem 4 of Meyer (1973) states that if a matrix is partitioned as equation (2) then

rank(D) = rank(D1,1)+ rank(Y)+ rank(W)+ rank(U)

where X− is the generalised inverse of X, and I is the identity matrix and where Y = (I−D1,1D−1,1)D1,2,

W = D2,1(I−D−1,1D1,1), and U = (I−WW−)(D2,2−D2,1D−1,1D1,2)(I−Y−W).

Due to the structure of κ(θ ,σ), D1,1 = ∂κ(β ,σ)/∂β is identical to ∂κw(β )/∂∂β , so that the rank of
D1,1 is q. Note that D1,1 is a q×n matrix. Theorem 6.2.16 of Graybill (1969) states that if D1,1 is a q×n
of rank q then D1,1D−1,1 = I. Therefore Y = (I− I)D1,2 = 0, which will have rank 0. In this case W is a
1×n matrix with non-zero entries, so it will have rank 1. Using Theorem 6.2.16 of Graybill (1969) again
I−WW− = I− I = 0, therefore U = 0 with rank 0. We then get the result,

rank(D) = q+1.

The estimable parameter combination will be β and σ .

Example 1b continued

Consider the state-space model with unknown variances, described above. From the main paper we know
that the rank of model with known variances is 2 and the estimable parameter combinations are φa and φ1ρ .
As the variance of ε i can be written in terms of φa and φ1ρ and Var(ηi) = σ2, without further calculation
we can deduce that the rank of the model with unknown variances is 3. This model is therefore parameter
redundant with estimable parameters φa, σ and φ1ρ .

Web Appendix A.5 Proof of Theorem 3.1

The proof of Theorem 3.1 is based on the same idea as the extension theorem (Catchpole and Morgan
1997, Cole et al. 2010).

Suppose the two exhaustive summaries for an integrated model are κB,1 and κB,2 of length k1 and k2,
with parameters θ 1 and θ 2 of length p1 and p2 respectively. The matrix D1,1(θ 1) = [∂κB,1(θ 1)/∂θ 1]
has rank q1 ≤ p1. This first part of the integrated model can be reparameterised in terms of its estimable
parameters or another reparameterisation, s1, of length q1 with rank(∂ s1/∂θ 1) = q1. If q1 = p1 we can
use the original parameters, θ 1, as the reparameterisation. By Theorem 8 of Cole et al. (2010), D1,1(s1) =
[∂κB,1(s1)/∂ s1] has full rank q1. The exhaustive summary κ2(θ 2) is then rewritten in terms of s1 as
κB,2(θ 2) = κ2(s1,θ

′
2), where θ

′
2 is a vector of length p′2 consisting of the rest of the parameters of κB,2.

The rank of D2,2 = [∂κB,2(s1,θ
′
2)/∂θ

′
2] is r′.

The derivative matrix for the integrated model is,

D(θ) =

[
D1,1(θ 1) D1,2(θ)

0 D2,2(θ)

]
=


∂κB,1(θ 1)

∂θ 1

∂κB,2(θ)

∂θ 1

0
∂κB,2(θ)

∂θ 2,ex

 ,

c© WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.biometrical-journal.com



6 Diana J. Cole et al.: Web based supplementary material

where θ 2,ex is a vector consisting of the parameters of θ 2 that are not in θ 2. By Theorem 8 of Cole et al.
(2010), rank{D(θ)}= rank{D(s)}, where

D(s) =
[

D1,1(s1) D1,2(s)
0 D2,2(s)

]
=


∂κB,1(s1)

∂ s1

∂κB,2(s1,θ
′
2)

∂ s1

0
∂κB,2(s1,θ

′
2)

∂θ
′
2

 . (3)

Theorem 4.2 of Meyer (1973) states that if a block-triangular matrix is partitioned as equation (3) then,

rank{D(s)} = rank{D1,1(s1)}+ rank{D2,2(s)}+
rank[{I−D1,1(s1)D−1,1(s1)}D1,2(s){I−D−2,2(s)D2,2(s)}], (4)

where X− is the generalised inverse of X and I is the identity matrix.
Here D1,1(s1) is a q1× k1 matrix which has rank q1. Using Theorem 6.2.16 of Graybill (1969) again

D1,1(s1)D−1,1(s1) = I. Therefore I−D1,1(s1)D−1,1(s1) = 0 so that rank[{I−D1,1(s1)D−1,1(s1)}D1,2(s){I−
D−2,2(s)D2,2(s)}] = 0. Thus rank{D(θ)}= rank{D(s)}= rank{D1,1(s1)+ rank(D2,2(s)}= q1 + r′.

Remarks 1 to 4 are a direct result of the proof of Theorem 3.1.
Remark 1 states that if ∂κB,1/∂θ 1 and ∂κB,2/∂θ 2 are individually full rank with ranks q1 = p1 and p2

and the integrated model has p2− p2,ex parameters common to both exhaustive summaries, there are p1 +
p2,ex parameters in the integrated model. The integrated model will also be full rank with rank p1 + p2,ex.
This is true as θ 1 = sB,1 and θ 2,ex consists of the p2,ex parameters not in θ 1. Because [∂κB,2(θ 2)/∂θ 2] is
full rank, D2,2 = [∂κB,2(sB,1,θ 2,ex)/∂θ 2,ex] will also be full rank.

Remark 2 states that if θ 1 and θ 2 have no parameters in common and the rank of ∂κB,2/∂θ 2 is q2
then the rank of the combined model is q1 + q2. We can apply equation (4) to D(θ) and note that if θ 1
and θ 2 have no parameters in common, D1,2(θ) = 0. Therefore rank[{I−D1,1(θ 1)D−1,1(θ 1)}D1,2(θ){I−
D−2,2(θ)D2,2(θ)}] = 0. So that rank{D(θ)}= rank{D1,1(θ 1)}+ rank{D2,2(θ 2)}= q1 +q2.

Remark 3 states that if θ 2,ex consists of only one parameter, then D2,2 will trivially have full rank 1.
Therefore the integrated model will have rank q1 +1. This result stems from the fact that if θ 2,ex consists
of only one parameter, D2,2 will be a n×1 matrix with at least 1 non-zero entry. Such a matrix will always
have rank 1.

The proof of remark 4 is included in the proof of Theorem 3.1 above.

Web Appendix B

This section provides further examples of integrated models that do not include state-space models.

Example 6: Combining independent capture-recapture and mark-recovery data sets

The paper Lebreton et al. (1995) examines two independent data sets. The first is capture-recapture data
which involves the live recapture of birds. The second is mark-recovery data which involves the recovery
of dead marked birds, rather than the live recapture of marked birds; the mark-recovery model is described
in more detail in Example 3. In Lebreton et al. (1995) the model for the mark-recovery data has three
survival parameters, φ1 and φ2 for first and second year survival and φa for adult survival, as well as one
recovery probability, λ . The model for the recovery data has one survival parameter in common with the
mark-recovery data, φa, as well as having a recapture probability that is dependent on time, pt . Separately
the models for the mark-recovery data and recapture data are both full rank. It is not stated in Lebreton
et al. (1995), but it is assumed to be obvious that this combined model is also full rank. This can now be
formally stated to be true using Remark 1 of the main paper.
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Example 7: Integrated mark-recovery model

For some mark-recovery data sets, such as mallard (Anas platyrhynchos) mark-recovery data, there is data
on birds marked as both juveniles and adults (see, for example, Freeman et al., 1990). For such data
sets it is possible to consider a model which has the adult survival probability, φa, and the adult recovery
probability, λa, common to both data sets. For the juveniles data, the model could also have a separate
survival probability for first year birds, φ1, and a separate recovery probability for first year birds, λ1. The
probabilities of recovery for birds marked as juveniles and birds marked as adults respectively are,

Pi, j, juv =

{
(1−φ1)λ1 i = j
φ1φ

j−i−1
a (1−φa) j > i

Pi, j,adu = φ
j−i

a (1−φa)λa.

An exhaustive summary can be formed from the natural logarithm of these probabilities. If there have
been three years of marking and three years of recovery the exhaustive summaries for the bird marked as
juveniles are

κ1 =

 ln{(1−φ1)λ1}
ln{φ1(1−φa)λa}

ln{φ1φa(1−φa)λa}

 and κ2 =

 ln{(1−φa)λa}
ln{φa(1−φa)λa}
ln{φ 2

a (1−φa)λa}


respectively. These exhaustive summaries are based on the natural logarithm of the probabilities of recov-
ery (Catchpole and Morgan, 1997) with any repeated exhaustive summary terms ignored. The parameters
are θ 1 = [φ1,φa,λ1,λa] and θ 2 = [φa,λa]. If the adult data is analysed separately the model is full rank.
However if the juvenile data sets are analysed separately the model is parameter redundant with rank 3
and deficiency 1 with estimable parameter combinations s1,1 = φa, s1,2 = φ1λa and s1,3 = φ1(1−φ1) (Cole
et al., 2012). Rewriting κ2 in terms of s1 = [s1,1,s1,2,s1,3] gives,

κ2(s1,θ
′
2) =


ln
{
(1− s1,1)s1,3λ1

s1,2−λ1

}
ln
{

s1,1(1− s1,1)s1,3λ1

s1,2−λ1

}
ln

{
s2

1,1(1− s1,1)s1,3λ1

s1,2−λ1

}


.

There is only one extra parameter, θ
′
2 = [λ1]. Therefore by remark 3 of the main paper the integrated

model has rank 4. As the model also has 4 parameters the combined model is full rank. Adding 1 extra
year of marking or 1 extra year of recovery adds no extra parameters, therefore by a trivial application of
the extension theorem of Catchpole and Morgan (1997) and Cole et al. (2010) this integrated model is full
rank for any number of years of marking and recovery.

It is also straightforward to use method 1 to prove the same result (see Maple code). The deficiency of
other combined mark-recovery models are considered in Cole et al. (2012).

Example 8: Integrated mark-recovery and age dependent mixture models

Some mark-recovery data is collected on animals of unknown age. It is not possible using standard mark-
recovery models to incorporate an age structure for survival probabilities or recovery probabilities. The
paper McCrea et al. (2013) develops an age dependent mixture model that allow for this structure. An
additional parameter, βa, is introduced to represent the unobserved proportion of animals in each age class.
However it is shown in McCrea et al. (2013) that these models are normally parameter redundant. The
problem of parameter redundancy is overcome by integrating another data set where the full age structure
of the animals is known.
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Here we examine one such combined age-dependent mixture model. It is assumed there are two sets of
data both covering 5 years of marking and 5 years of recovery. In the first set of data, animals are marked in
their first year of life so that the full age structure is known. A standard mark-recovery model can be fitted
to this set of data. The second set of data consists of animals marked at an unknown age. Suppose that we
wish to fit a combined model to both data sets with separate survival probabilities for first year animals,
φ1, second year animals, φ2, and adult animals, φa. However the second set of data could include second
year animals, so we assume that the proportion β2 of animals are in their second year. To allow for this age
structure an age dependent mixture model is to be fitted the second data set. The recovery probability, λa,t
is assumed to be dependent on both the age category and time.

The probabilities of recovery for an animal marked in year i and recovered dead in year j for the first
data set are P1,i, j and are summarised in the matrix below:

P1 =


φ̄1λ1,1 φ1φ̄2λ2,2 φ1φ2φ̄aλa,3 φ1φ2φaφ̄aλa,4 φ1φ2φ 2

a φ̄aλa,5
0 φ̄1λ1,2 φ1φ̄2λ2,3 φ1φ2φ̄aλa,4 φ1φ2φaφ̄aλa,4
0 0 φ̄1λ1,3 φ1φ̄2λ2,4 φ1φ2φ̄aλa,5
0 0 0 φ̄1λ1,4 φ1φ̄2λ2,5
0 0 0 0 φ̄1λ1,5

 ,
with x̄ = 1− x. The probabilities of recovery for an animal marked in year i and recovered dead in year j
for the second data set are P2,i, j and are summarised in the matrices below:

P2,1...5,1...3 =


β2φ̄2λ2,1 + β̄2φ̄aλa,1 β2φ2φ̄aλa,2 + β̄2φaφ̄aλa,2 β2φ2φaφ̄aλa,3 + β̄2φ 2

a φ̄aλa,3
0 β2φ̄2λ2,2 + β̄2φ̄aλa,2 β2φ2φ̄aλa,3 + β̄2φaφ̄aλa,3
0 0 β2φ̄2λ2,3 + β̄2φ̄aλa,3
0 0 0
0 0 0



P2,1...5,4...5 =


β2φ2φ 2

a φ̄aλa,4 + β̄2φ 3
a φ̄aλa,4 β2φ2φ 3

a φ̄aλa,5 + β̄2φ 4
a φ̄aλa,5

β2φ2φaφ̄aλa,4 + β̄2φ 2
a φ̄aλa,4 β2φ2φ 2

a φ̄aλa,5 + β̄2φ 3
a φ̄aλa,5

β2φ2φ̄aλa,4 + β̄2φaφ̄aλa,4 β2φ2φaφ̄aλa,5 + β̄2φ 2
a φ̄aλa,5

β2φ̄2λ2,4 + β̄2φ̄aλa,4 β2φ2φ̄aλa,5 + β̄2φaφ̄aλa,5
0 β2φ̄2λ2,5 + β̄2φ̄aλa,5

 .
The exhaustive summaries κ1 and κ2 consist of the natural logarithm of the non-zero entries of P1 and

P2. It is not possible to use method 1 to find the rank of the integrated mark-recovery and age dependent
mixture model as Maple runs out of memory trying to calculate the rank. One possibility is to use the
hybrid symbolic-numeric method of Choquet and Cole (2012), as demonstrated in the Maple code.

The alternative is to use method 2. The vector κ1 has rank q1 = 13, but 15 parameters so had deficiency
2. Here we use the reparameterisation, s1, consisting of φa, Pi,i for i = 1, . . . ,5 Pi,i+1 for i = 1, . . . ,4
and P1, j for i = 3, . . . ,5. Next κ2 is rewritten terms of s1, which has the additional parameters θ

′
2 =

[β2,λ1,4,λ2,1,λ2,4,λa,1,λa,2] and then the derivative matrix D2,2 = ∂κ2(s1,θ
′
2)/∂θ

′
2 is formed. It is shown

in the Maple code that the rank of D2,2 is r′= 4. By Theorem 2 the rank of the integrated model is q1+r′=
13+4 = 17. However there are 19 parameters so this model is parameter redundant with deficiency 2. It
is not possible to estimate all the parameters of this model.

Full parameter redundancy results for other integrated mark-recovery and age dependent mixture models
are given in McCrea et al. (2013).

Web Appendix C

In this section we examine mark-recovery, capture-recapture, and capture-recapture-recovery models in
state-space model format.
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The mark-recovery model discussed in examples 6 and 7 can be written as a state-space model with

Yi,t |Xi,t ,Xi,t−1 ∼ Bernoulli{(Xi,t−1−Xi,t)λt} and Xi,t+1|Xi,t ∼ Bernoulli(Xi,tφt+1),

where for individual i = 1, . . . ,n, Xi,t is a binary random variable taking values 1 if the individual is alive
at time t = 1, . . . ,T and 0 otherwise, Yi,t is a binary random variable taking on values 1 if the individual is
recovered dead at time t and 0 otherwise. The parameter φt is the probability of survival and the parameter
λt is the probability of recovery. As all calculations are made conditional on when individual i was marked
at time t = fi we assume Xi, fi−1 = 1 (Gimenez et al., 2007). For individuals marked at time t = 1 the
state-space exhaustive summary is formed from

E(Xi,1) = φ1, E(Yi,1) = (1−φ1)λ1
E(Xi,2) = φ1φ2, E(Yi,2) = φ1(1−φ2)λ2
E(Xi,3) = φ1φ2φ3, E(Yi,2) = φ1φ2(1−φ3)λ3

...
...

Similar terms can be derived from animals marked at later times. The E(Yi, j) form an exhaustive summary
with identical terms to the one used in Cole et al. (2012). Cole et al. (2012) also provide tables of general
results for most common mark-recovery models.

The capture-recapture model can be written as a state-space model with

Yi,t |Xi,t ,Xi,t−1 ∼ Bernoulli(Xi,t pt) and Xi,t+1|Xi,t ∼ Bernoulli(Xi,tφt),

where for individual i = 1, . . . ,n, Xi,t is a binary random variable taking values 1 if the individual is alive
at time t = 1, . . . ,T and 0 otherwise, Yi,t is a binary random variable taking on values 1 if the individual is
encountered at time t and 0 otherwise. The parameter φt is the probability of survival and the parameter λt
is the probability of recovery. As all calculations are made conditional on when individual i was marked at
time t = fi we assume Xi, fi = 1 (Gimenez et al., 2007, Royle, 2008). For the exhaustive summary derived
below for 4 years of marking and 4 subsequent years of recovery, Yi,t denotes all individuals marked at time
i.

κ1 =



E(Y1,2)
E(Y1,3)
E(Y1,4)
E(Y1,5)
E(Y2,3)
E(Y2,4)
E(Y2,5)
E(Y3,4)
E(Y3,5)
E(Y4,5)


=



φ1 p2
φ1φ2 p3

φ1φ2φ3 p4
φ1φ2φ3φ4 p5

φ2 p3
φ2φ3 p4

φ2φ3φ4 p5
φ3 p4

φ3φ4 p5
φ4 p5


.

This exhaustive summary consists of 10 terms. In general for T −1 years of marking and T −1 subsequent
years of recovery the exhaustive summary consists of 1

2 T 2− 1
2 T terms.

A simpler exhaustive summary is given Hubbard et al. (2014) with,

κ1 =



φ1 p2
φ2(1− p2)

φ2 p3
φ2(1− p3)

φ3 p4
φ3(1− p4)

φ4 p5


.
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This exhaustive summary is simpler and consists of only 7 terms. In general for T − 1 years of marking
and T −1 subsequent years of recovery the exhaustive summary consists of 2T −3 terms.

The exhaustive summary of Hubbard et al. (2014) is also more general than the exhaustive summary
produced when a capture-recapture model is written in terms of a state-space model, because the Hubbard
et al. (2014) exhaustive summary allows for age dependence. It is better to use the simplest exhaustive
summary available for any given model, therefore we recommend the use of the (Hubbard et al., 2014)
exhaustive summary in this case. We also note that (Hubbard et al., 2014) gives general parameter results
for many capture-recapture models.

Similarly simpler exhaustive summaries and general results are given for capture-recapture-recovery
models in Hubbard et al. (2014).
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